ALL libraries (COBIB.SI union bibliographic/catalogue database)
  • On bilinear maps on matrices with applications to commutativity preservers
    Brešar, Matej ; Šemrl, Peter
    Let ▫$M_n$▫ be the algebra of all ▫$n \times n$▫ matrices over a commutative unital ring ▫$\mathcal{C}$▫, and let ▫$\mathcal{L}$▫ be a ▫$\mathcal{C}$▫-module. Various characterizations of bilinear ... maps ▫$\{\,.\,,\,.\,\}: M_n \times M_n \to \mathcal{L}$▫ with the property that ▫$\{x,y\} = 0$▫ whenever ▫$x$▫ any ▫$y$▫ commute are given. As the main application of this result we obtain the definitive solution of the problem of describing (not necessarily bijective) commutativity preserving linear maps from ▫$M_n$▫ into ▫$M_n$▫ for the case where ▫$\mathcal{C}$▫ is an arbitrary field; moreover, this description is valid in every finite dimensional central simple algebra.
    Source: Journal of algebra. - ISSN 0021-8693 (Vol. 301, no. 2, 2006, str. 803-837)
    Type of material - article, component part
    Publish date - 2006
    Language - english
    COBISS.SI-ID - 13984857

source: Journal of algebra. - ISSN 0021-8693 (Vol. 301, no. 2, 2006, str. 803-837)
loading ...
loading ...
loading ...