ALL libraries (COBIB.SI union bibliographic/catalogue database)
-
Natural language interaction with a household electricity knowledge-based digital twin [Elektronski vir]Fortuna, Carolina ; Hanžel, Vid ; Bertalanič, BlažDomain specific digital twins, representing a digital replica of various segments of the smart grid, are foreseen as able to model, simulate, and control the respective segments. At the same time, ... knowledge-based digital twins, coupled with AI, may also empower humans to understand aspects of the system through natural language interaction in view of planning and policy making. This paper is the first to assess and report on the potential of Retrieval Augmented Generation (RAG) question answers related to household electrical energy measurement aspects leveraging a knowledge-based energy digital twin. Relying on the recently published electricity consumption knowledge graph that actually represents a knowledge-based digital twin, we study the capabilities of ChatGPT, Gemini and Llama in answering electricity related questions. Furthermore, we compare the answers with the ones generated through a RAG techniques that leverages an existing electricity knowledge-based digital twin. Our findings illustrate that the RAG approach not only reduces the incidence of incorrect information typically generated by LLMs but also significantly improves the quality of the output by grounding responses in verifiable data. This paper details our methodology, presents a comparative analysis of responses with and without RAG, and discusses the implications of our findings for future applications of AI in specialized sectors like energy data analysis.Domain specific digital twins, representing a digital replica of various segments of the smart grid, are foreseen as able to model, simulate, and control the respective segments. At the same time, knowledge-based digital twins, coupled with AI, may also empower humans to understand aspects of the system through natural language interaction in view of planning and policy making. This paper is the first to assess and report on the potential of Retrieval Augmented Generation (RAG) question answers related to household electrical energy measurement aspects leveraging a knowledge-based energy digital twin. Relying on the recently published electricity consumption knowledge graph that actually represents a knowledge-based digital twin, we study the capabilities of ChatGPT, Gemini and Llama in answering electricity related questions. Furthermore, we compare the answers with the ones generated through a RAG techniques that leverages an existing electricity knowledge-based digital twin. Our findings illustrate that the RAG approach not only reduces the incidence of incorrect information typically generated by LLMs but also significantly improves the quality of the output by grounding responses in verifiable data. This paper details our methodology, presents a comparative analysis of responses with and without RAG, and discusses the implications of our findings for future applications of AI in specialized sectors like energy data analysis.Type of material - conference contribution ; adult, seriousPublish date - 2024Language - englishCOBISS.SI-ID - 214063875
Shelf entry
Permalink
- URL:
Impact factor
Access to the JCR database is permitted only to users from Slovenia. Your current IP address is not on the list of IP addresses with access permission, and authentication with the relevant AAI accout is required.
| Year | Impact factor | Edition | Category | Classification | ||||
|---|---|---|---|---|---|---|---|---|
| JCR | SNIP | JCR | SNIP | JCR | SNIP | JCR | SNIP | |
Impact factor
Select the library membership card:
If the library membership card is not in the list,
add a new one.
DRS, in which the journal is indexed
| Database name | Field | Year |
|---|
| Links to authors' personal bibliographies | Links to information on researchers in the SICRIS system |
|---|---|
| Fortuna, Carolina | 29521 |
| Hanžel, Vid | ![]() |
| Bertalanič, Blaž | 54683 |
Source: Personal bibliographies
and: SICRIS
Select pickup location:
Material pickup by post
Delivery address:
Address is missing from the member's data.
The address retrieval service is currently unavailable, please try again.
By clicking the "OK" button, you will confirm the pickup location selected above and complete the reservation process.
By clicking the "OK" button, you will confirm the above pickup location and delivery address, and complete the reservation process.
By clicking the "OK" button, you will confirm the address selected above and complete the reservation process.
Notification
Automatic login and reservation service currently not available. You can reserve the material on the Biblos portal or try again here later.
Select pickup location
The material from the parent unit is free. If the material is delivered to the pickup location from another unit, the library may charge you for this service.
| Pickup location | Material status | Reservation |
|---|
Reservation in progress
Please wait a moment.
Reservation was successful.
Reservation failed.
Reservation...
Membership card:
Pickup location:
