VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
PDF
  • Geometry of free loci and factorization of noncommutative polynomials
    Helton, J. William, 1944- ; Klep, Igor, matematik ; Volčič, Jurij, 1991-
    The free singularity locus of a noncommutative polynomial ▫$f$▫ is defined to be the sequence of hypersurfaces ▫$\mathscr{Z}_n(f) = \{X \in \mathrm{M}_n(\Bbbk)^g : \det f(X) = 0 \}$▫. The main ... theorem of this article shows that ▫$f$▫ is irreducible if and only if ▫$\mathscr{Z}_n(f)$▫ is eventually irreducible. A key step in the proof is an irreducibility result for linear pencils. Arising from this is a free singularity locus Nullstellensatz for noncommutative polynomials. Apart from consequences to factorization in a free algebra, the paper also discusses its applications to invariant subspaces in perturbation theory and linear matrix inequalities in real algebraic geometry.
    Vir: Advances in mathematics. - ISSN 0001-8708 (Vol. 331, June 2018, str. 589-626)
    Vrsta gradiva - članek, sestavni del ; neleposlovje za odrasle
    Leto - 2018
    Jezik - angleški
    COBISS.SI-ID - 18416217

vir: Advances in mathematics. - ISSN 0001-8708 (Vol. 331, June 2018, str. 589-626)
loading ...
loading ...
loading ...