VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
  • Concentrating solutions of the fractional ▫$(p,q)$▫-Choquard equation with exponential growth
    Song, Yueqiang ; Sun, Xueqi ; Repovš, Dušan, 1954-
    This paper deals with the following fractional ▫$(p,q)$▫-Choquard equation with exponential growth of the form: ▫$\varepsilon^{p s} (-\Delta)^{s}_{p} u + \varepsilon^{q s} (-\Delta)^{s}_{q} u + Z(x) ... ( |u|^{p-2} u + |u|^{q-2} u)$▫ ▫$=\varepsilon^{\mu - N} [ |x|^{-\mu} * F(u) ] f(u)$▫ in ▫$\mathbb{R}^N,$▫ where ▫$s \in (0,1)$▫, ▫$\varepsilon > 0$▫ is a parameter, ▫$2 \leq p = \frac{N}{s} < q$▫, and ▫$0 < \mu < N$▫. The nonlinear function ▫$f$▫ has exponential growth at infinity, and the continuous potential function ▫$Z$▫ satisfies suitable natural conditions. Using Ljusternik–Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for ▫$\varepsilon > 0$▫ small enough. In a certain sense, we generalize some previously known results.
    Vir: Analysis and applications. - ISSN 0219-5305 (Vol. , iss. , [v tisku] 2025, 40 str.)
    Vrsta gradiva - članek, sestavni del ; neleposlovje za odrasle
    Leto - 2025
    Jezik - angleški
    COBISS.SI-ID - 237989123

vir: Analysis and applications. - ISSN 0219-5305 (Vol. , iss. , [v tisku] 2025, 40 str.)
loading ...
loading ...
loading ...