-
Machine learning-assisted diagnosis classification of primary immune dysregulation using IDDA2.1 phenotype profiling [Elektronski vir]Schwitzkowski, Malte ...Background Immune dysregulation, including autoimmunity, autoinflammation, allergy, and malignancy predisposition, adds significant disease burden in primary immune disorders (PID) and inborn errors ... of immunity (IEIs). Objective We evaluated whether the 5-graded immune deficiency and dysregulation activity (IDDA2.1) score, encompassing 21 organ involvement and disease burden parameters, supports diagnosis across a wide spectrum of IEIs. Methods From April 2022 to November 2024, collaborators from 84 centers collected 1,043 IDDA score datasets from 825 patients across 89 IEIs (17 disorders with ≥10 patients each; range, 1-196 per IEI), including 177 scores from 141 treated patients. Supervised machine learning models ( k -nearest neighbors, support vector machine, logistic regression, random forest) classified patients into disease groups and ranked corresponding predictive features, while unsupervised uniform manifold approximation and projection (UMAP) visualized disease-specific clustering. Results Feature analysis reflected clinicians’ recognition of IEI patterns and confirmed internal IDDA score consistency. Phenotype profiles in treated patients remained informative, inversely reflecting anticipated treatment-dependent phenotype amelioration. UMAP effectively distinguished IEIs by IDDA2.1 profiles. Genetic disorder prediction achieved 73% overall accuracy, 70% for the correct monogenic IEI, and 93% within the top 3 predictions; classification reached 43% for IEI–International Union of Immunological Society categories and 59% for 12 “cardinal” IEIs (25 genes). Conclusions Random forest feature importance analysis can inform targeted clinical screening for key disease manifestations. The top 3 prediction approach demonstrates diagnostic potential, but improved accuracy will require larger, globally shared datasets. Small sample sizes for rare diseases highlight the necessity of broader collaboration to enhance AI-assisted clinical decision-making in the future.Vir: The journal of allergy and clinical immunology [Elektronski vir]. - ISSN 1097-6825 (Vol. , issue , 2025, 16 str.)Vrsta gradiva - e-članek ; neleposlovje za odrasleLeto - 2025Jezik - angleškiCOBISS.SI-ID - 262513411
Avtor
Schwitzkowski, Malte |
Veeranki, Sai Pavan Kumar |
Seidel, Benedikt N. |
Kindle, Gerhard |
Rusch, Stephan |
Kramer, Diether, zdravstveni informatik |
Seidel, Markus G. |
European Society for Immunodeficiencies |
Registry Working Party
Drugi avtorji
Avčin, Tadej |
Blazina, Štefan, pediater |
Meško Meglič, Karmen |
Kopač, Peter, 1979- |
Markelj, Gašper, 1978-
Teme
Primary Immunodeficiency Diseases |
Autoimmune Diseases |
Machine Learning |
Primarne imunske pomanjkljivosti |
Avtoimunske bolezni |
Strojno učenje |
prirojena napaka imunosti |
primarna motnja imunske regulacije |
fenotipsko vodena klasifikacija bolezni |
interoperabilni podatki o pacientih |
ocena aktivnosti imunske pomanjkljivosti in disregulacije |
umetna inteligenca |
nenadzorovano in nadzorovano strojno učenje |
primarna imunska pomanjkljivost |
inborn error of immunity |
IEI |
primary immune regulatory disorder |
PIRD |
phenotype-driven disease classification |
interoperable patient data |
immune deficiency and dysregulation activity (IDDA) score |
artificial intelligence |
AI |
unsupervised and supervised machine learning |
ML |
primary immune disorder |
PID
Vnos na polico
Trajna povezava
- URL:
Faktor vpliva
Dostop do baze podatkov JCR je dovoljen samo uporabnikom iz Slovenije. Vaš trenutni IP-naslov ni na seznamu dovoljenih za dostop, zato je potrebna avtentikacija z ustreznim računom AAI.
| Leto | Faktor vpliva | Izdaja | Kategorija | Razvrstitev | ||||
|---|---|---|---|---|---|---|---|---|
| JCR | SNIP | JCR | SNIP | JCR | SNIP | JCR | SNIP | |
Faktor vpliva
Baze podatkov, v katerih je revija indeksirana
| Ime baze podatkov | Področje | Leto |
|---|
| Povezave do osebnih bibliografij avtorjev | Povezave do podatkov o raziskovalcih v sistemu SICRIS |
|---|---|
| Schwitzkowski, Malte | ![]() |
| Veeranki, Sai Pavan Kumar | ![]() |
| Seidel, Benedikt N. | ![]() |
| Kindle, Gerhard | ![]() |
| Rusch, Stephan | ![]() |
| Kramer, Diether, zdravstveni informatik | ![]() |
| Seidel, Markus G. | ![]() |
| Avčin, Tadej | 19258 |
| Blazina, Štefan, pediater | 36211 |
| Meško Meglič, Karmen | 24280 |
| Kopač, Peter, 1979- | 30983 |
| Markelj, Gašper, 1978- | 29593 |
Izberite prevzemno mesto:
Prevzem gradiva po pošti
Obvestilo
Gesla v Splošnem geslovniku COBISS
Izbira mesta prevzema
| Mesto prevzema | Status gradiva | Rezervacija |
|---|
Prosimo, počakajte trenutek.
